DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40163B MSI

4-bit synchronous binary counter with synchronous reset

Product specification
File under Integrated Circuits, IC04

PHILIPS

4-bit synchronous binary counter with

DESCRIPTION

The HEF40163B is a fully synchronous edge-triggered 4-bit binary counter with a clock input (CP), four synchronous parallel data inputs (P_{0} to P_{3}), four synchronous mode control inputs (parallel enable ($\overline{\mathrm{PE}}$), count enable parallel (CEP), count enable trickle (CET) and synchronous reset $(\overline{\mathrm{SR}})$), buffered outputs from all four bit positions $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}\right)$ and a terminal count output (TC).

Operation is fully synchronous and occurs on the LOW to HIGH transition of CP. When $\overline{\text { PE }}$ is LOW, the next LOW to HIGH transition of CP loads data into the counter from P_{0} to P_{3}. When $\overline{\text { PE }}$ is HIGH, the next LOW to HIGH
transition of CP advances the counter to its next state only if both CEP and CET are HIGH; otherwise no change occurs in the state of the counter. TC is HIGH when the state of the counter is $15\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}=\mathrm{HIGH}\right)$ and when CET is HIGH. A LOW on SR sets all outputs (O_{0} to O_{3} and TC) LOW on the next LOW to HIGH transition of CP, independent of the state of all other synchronous mode control inputs (CEP, CET and $\overline{\mathrm{PE}}$). Multistage synchronous counting is possible without additional components by using a carry look-ahead counting technique; in this case, TC is used to enable successive cascaded stages. CEP, CET, $\overline{\mathrm{PE}}$ and $\overline{\mathrm{SR}}$ must be stable only during the set-up time before the LOW to HIGH transition of CP.

Fig. 1 Functional diagram.

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

uo!̣eo!!!əəds łonpord

4-bit synchronous binary counter with

Fig. 3 Pinning diagram.

PINNING

$\overline{\mathrm{PE}}$	parallel enable input
P_{0} to P_{3}	parallel data inputs
CEP	count enable parallel input
CET	count enable trickle input
CP	clock input (LOW to HIGH, edge-triggered)
$\overline{\mathrm{SR}}$	synchronous reset input (active LOW)
O_{0} to O_{3}	parallel outputs
TC	terminal count output

HEF40163BP(N): 16-lead DIL; plastic (SOT38-1)
HEF40163BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF40163BT(D): 16-lead SO; plastic (SOT109-1)
(): Package Designator North America

SYNCHRONOUS MODE SELECTION

$\overline{\mathbf{S R}}$	$\overline{\mathbf{P E}}$	CEP	CET	MODE
H	L	X	X	preset
H	H	L	X	no change
H	H	X	L	no change
H	H	H	H	count
L	X	X	X	reset

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
2. $\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
3. $\mathrm{X}=$ state is immaterial

TERMINAL COUNT GENERATION

CET	$\left(\mathrm{O}_{\mathbf{0}} \cdot \mathbf{O}_{\mathbf{1}} \cdot \mathbf{O}_{\mathbf{2}} \cdot \mathbf{O}_{3}\right)$	TC
L	L	L
L	H	L
H	L	L
H	H	H

Note

1. $\mathrm{TC}=\mathrm{CET} \cdot \mathrm{O}_{0} \cdot \mathrm{O}_{1} \cdot \mathrm{O}_{2} \cdot \mathrm{O}_{3}$

Fig. 4 State diagram.

4-bit synchronous binary counter with synchronous reset

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\mathbf{V}_{\text {DD }}$ \mathbf{V}	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Dynamic power	5	$1200 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$5600 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$16000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD}	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 110 \\ 45 \\ 30 \end{array}$	$\begin{array}{r} 220 \\ 90 \\ 60 \end{array}$	ns ns ns	$\begin{aligned} & 83 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 34 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tplh	$\begin{array}{r} 115 \\ 45 \\ 35 \end{array}$	230 95 65	ns ns ns	$\begin{aligned} & 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 34 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{CP} \rightarrow \mathrm{TC}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 130 \\ 55 \\ 35 \end{array}$	$\begin{array}{r} 260 \\ 105 \\ 75 \end{array}$	ns ns ns	$\begin{array}{r} 103 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} \hline 140 \\ 55 \\ 40 \end{array}$	280 115 80	ns ns ns	$\begin{aligned} 113 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 44 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 32 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{CET} \rightarrow \mathrm{TC}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 105 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 210 \\ 100 \\ 75 \end{array}$	ns ns ns	$\begin{aligned} & 78 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 90 \\ & 35 \\ & 25 \end{aligned}$	185 70 50	ns ns ns	$\begin{aligned} & 63 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 60 40	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 60 40	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

```
4-bit synchronous binary counter with

\section*{AC CHARACTERISTICS}
\(\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\); input transition times \(\leq 20 \mathrm{~ns}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\mathbf{V}_{\mathrm{DD}} \\
\mathbf{V}
\end{gathered}
\] & SYMBOL & MIN. & TYP. & MAX. & \\
\hline Minimum clock pulse width; LOW & \[
\begin{array}{r}
5 \\
10 \\
15
\end{array}
\] & \(t_{\text {WCPL }}\) & \[
\begin{array}{r}
100 \\
40 \\
30
\end{array}
\] & \[
\begin{aligned}
& 50 \\
& 20 \\
& 15
\end{aligned}
\] & \begin{tabular}{l}
ns \\
ns \\
ns
\end{tabular} & \\
\hline Set-up times
\[
\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{CP}
\] & \[
\begin{array}{r}
5 \\
10 \\
15
\end{array}
\] & \(\mathrm{t}_{\text {su }}\) & \[
\begin{array}{r}
110 \\
40 \\
30
\end{array}
\] & \[
\begin{aligned}
& 55 \\
& 20 \\
& 15
\end{aligned}
\] & \begin{tabular}{l}
ns \\
ns \\
ns
\end{tabular} & \\
\hline \(\overline{\mathrm{PE}} \rightarrow \mathrm{CP}\) & \[
\begin{array}{r}
5 \\
10 \\
15
\end{array}
\] & \(\mathrm{t}_{\text {su }}\) & \[
\begin{array}{r}
120 \\
40 \\
25
\end{array}
\] & \[
\begin{aligned}
& 60 \\
& 20 \\
& 10
\end{aligned}
\] & \begin{tabular}{l}
ns \\
ns \\
ns
\end{tabular} & \\
\hline CEP, CET \(\rightarrow\) CP & \[
\begin{array}{r}
5 \\
10 \\
15
\end{array}
\] & \(\mathrm{t}_{\text {su }}\) & \[
\begin{array}{r}
260 \\
100 \\
70
\end{array}
\] & \[
\begin{array}{r}
130 \\
50 \\
35
\end{array}
\] & \begin{tabular}{l}
ns \\
ns \\
ns
\end{tabular} & \\
\hline \(\overline{\mathrm{SR}} \rightarrow \mathrm{CP}\) & \[
\begin{array}{r}
5 \\
10 \\
15
\end{array}
\] & \(\mathrm{t}_{\text {su }}\) & \[
\begin{aligned}
& 50 \\
& 20 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 10 \\
& 10
\end{aligned}
\] & \begin{tabular}{l}
ns \\
ns \\
ns
\end{tabular} & see also waveforms Figs 5, 6, 7 and 8 \\
\hline Hold times
\[
\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{CP}
\] & \[
\begin{array}{r}
5 \\
10 \\
15
\end{array}
\] & thold & \[
\begin{array}{r}
20 \\
10 \\
5
\end{array}
\] & \[
\begin{array}{r}
\hline-35 \\
-10 \\
-10 \\
\hline
\end{array}
\] & ns ns ns & \\
\hline \(\overline{\mathrm{PE}} \rightarrow \mathrm{CP}\) & \[
\begin{array}{r}
5 \\
10 \\
15
\end{array}
\] & thold & \[
\begin{array}{r}
15 \\
5 \\
5
\end{array}
\] & \[
\begin{aligned}
& -45 \\
& -15 \\
& -10
\end{aligned}
\] & ns ns ns & \\
\hline CEP, CET \(\rightarrow\) CP & \[
\begin{array}{r}
5 \\
10 \\
15
\end{array}
\] & thold & \[
\begin{aligned}
& 25 \\
& 15 \\
& 10
\end{aligned}
\] & \[
\begin{array}{r}
-105 \\
-35 \\
-25
\end{array}
\] & \begin{tabular}{l}
ns \\
ns \\
ns
\end{tabular} & \\
\hline \(\overline{\mathrm{SR}} \rightarrow \mathrm{CP}\) & \[
\begin{array}{r}
5 \\
10 \\
15
\end{array}
\] & thold & \[
\begin{array}{r}
15 \\
5 \\
5
\end{array}
\] & \[
\begin{array}{r}
-10 \\
-5 \\
0
\end{array}
\] & \begin{tabular}{l}
ns \\
ns \\
ns
\end{tabular} & \\
\hline Maximum clock pulse frequency & \[
\begin{array}{r}
5 \\
10 \\
15
\end{array}
\] & \(\mathrm{f}_{\text {max }}\) & \[
\begin{aligned}
& \hline 2,5 \\
& 7 \\
& 9
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
14 \\
18
\end{array}
\] & \[
\begin{aligned}
& \hline \mathrm{MHz} \\
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] & \\
\hline
\end{tabular}

4-bit synchronous binary counter with


\section*{4-bit synchronous binary counter with}



\section*{Note}

Set-up and hold times are shown as positive values but may be specified as negative values.

4-bit synchronous binary counter with


Fig. 9 Timing diagram.

\section*{APPLICATION INFORMATION}

An example of an application for the HEF40163B is:
- Programmable binary counter.

4-bit synchronous binary counter with
```

